
J Multimodal User Interfaces (2016) 10:113–124
DOI 10.1007/s12193-015-0204-5

ORIGINAL PAPER

Video modeling and learning on Riemannian manifold for emotion
recognition in the wild

Mengyi Liu1 · Ruiping Wang1 · Shaoxin Li1 · Zhiwu Huang1 ·
Shiguang Shan1 · Xilin Chen1

Received: 15 December 2014 / Accepted: 14 October 2015 / Published online: 11 November 2015
© OpenInterface Association 2015

Abstract In this paper, we present the method for our sub-
mission to the emotion recognition in the wild challenge
(EmotiW). The challenge is to automatically classify the
emotions acted by human subjects in video clips under real-
world environment. In our method, each video clip can be
represented by three types of image set models (i.e. lin-
ear subspace, covariance matrix, and Gaussian distribution)
respectively, which can all be viewed as points residing
on some Riemannian manifolds. Then different Riemannian
kernels are employed on these set models correspondingly
for similarity/distance measurement. For classification, three
types of classifiers, i.e. kernel SVM, logistic regression,
and partial least squares, are investigated for comparisons.
Finally, an optimal fusion of classifiers learned from dif-
ferent kernels and different modalities (video and audio)
is conducted at the decision level for further boosting
the performance. We perform extensive evaluations on the
EmotiW 2014 challenge data (including validation set and
blind test set), and evaluate the effects of different com-
ponents in our pipeline. It is observed that our method
has achieved the best performance reported so far. To fur-
ther evaluate the generalization ability, we also perform
experiments on the EmotiW 2013 data and two well-known
lab-controlled databases: CK+ and MMI. The results show
that the proposed framework significantly outperforms the
state-of-the-art methods.
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1 Introduction

Automatic emotion recognition is a popular and challeng-
ing problem in the research fields of cognitive psychology,
human-computer interaction, pattern recognition, and so
on. Early stage research mostly focuses on the emotion
databases collected in “lab-controlled” environment where
human subjects posed particular emotions (e.g. angry, happy,
and surprise). With recent advances in emotion recogni-
tion community, various spontaneous or wild databases have
been introduced for emotion recognition challenges, such as
the facial expression recognition and analysis (FERA) [48],
audio video emotion challenges (AVEC) [47], and emotion
recognition in the wild (EmotiW) [10]. These challenges
have provided common benchmarks for emotion recognition
researchers.

Previousworks on emotion recognition canbebroadly cat-
egorized into two groups [55]: static image based methods
[28,41,58] and video based methods [30,54,57]. The video
based methods tend to utilize dynamic information extracted
from image sequences for improving the performance. For
instance, Zhao et al. [57] encoded spatial-temporal patterns
in facial image sequences using LBP-TOP features. Liu et al.
[30] modeled each emotion clip as a manifold of mid-level
features for representing the local spatial-temporal variations
on faces. As demonstrated in their experiments, various types
of dynamic features are crucial for modeling emotion varia-
tions in the recognition task.

Generally, extracting dynamics from successive frames
requires accurate image alignment to eliminate the rigid
motion effect brought by camera or head pose. However,
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it is quite difficult especially when dealing with “wild data”
due to the large variations caused by uncontrolled real-world
environment. As a video clip can be simply regarded as an
image set, it is natural to introduce the image-set-based clas-
sification methods [17,27,49,50], which have been proved
to be more robust to image misalignment. In EmotiW 2013
challenge [31], we proposed to model each video (image
set) as a linear subspace lying on Grassmannian manifold
[17], and conduct a one-vs-all manner partial least squares
for classification, which achieved promising results using
single type of image feature. In our EmotiW 2014 sub-
mission [32], we extend the former work by introducing
various modeling methods on manifold to further improve
the performance. Specifically, each emotion video clip can
be represented using three kinds of image set models (i.e.
linear subspace, covariance matrix, and Gaussian distribu-
tion) respectively, which can all be viewed as points residing
on some Riemannian manifolds. Then different Riemanian
kernels are employed on these set models correspondingly
for similarity/distance measurement. For classification, three
types of classifiers, kernel SVM, logistic regression, par-
tial least squares, are investigated for comparisons. Finally,
a score-level fusion of classifiers learned based on differ-
ent kernel methods and different modalities (i.e. video and
audio) is conducted to further improve the performance. An
overview of the proposed method is illustrated in Fig. 1.
The proposed method is evaluated in EmotiW2014 chal-
lenge with its results reported in our conference paper [32].
This paper extends the conference version by providingmore
in-depth investigation of different components in our frame-
work and conducting more extensive evaluations of their

effects on the final performance. To further evaluate the
generalization ability of our method, we also add experimen-
tal results on the EmotiW 2013 data and two well-known
lab-controlled databases: CK+ and MMI. In the following
sections, wewill detail thewhole procedure and the extensive
evaluations.

2 The proposed method

2.1 Image feature

2.1.1 HOG

The histogram of oriented gradients (HOG) [6] feature
describes the local shape and appearance of objects by cap-
turing the distribution information of intensity gradients or
edge directions. The descriptor decomposes a local region
into small squared cells, computes the histogram of differ-
ent bins of oriented gradients in each cell, and normalizes
the results using block-wise pattern (each block contains
several cells). HOG is commonly used in computer vision
problems, such as object detection and recognition. It has
also been successfully used for facial expression analysis
in [8,43].

2.1.2 Dense SIFT

The scale-invariant feature transform (SIFT) [34] combines a
feature detector and a feature descriptor. The detector extracts
a number of interested points from an image in a way that is

Fig. 1 An overview of the proposed method. The whole procedure
includes two stages: emotion video representation and recognition. In
representation stage, different image features are first extracted from the
coarsely aligned faces, then different image set models are employed on
frame features respectively for representing each video clip. In recogni-

tion stage, classification on Riemannianmanifold spanned by the points
(i.e. image sets) is performed using different types of classifiers by
exploiting a group of Riemannian kernels. Finally a score-level fusion
is conducted to combine the prediction results from different kernels
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consistent with some variations of the illumination or view-
point. The descriptor associates to the region around each
interest point a signature which identifies its appearance
compactly and robustly. For dense SIFT, it is equivalent to
performing SIFT descriptor on a dense grid of locations on
an image at a fixed scale and orientation. The obtained fea-
ture vectors characterizing appearance information are often
used for categorization task.

2.1.3 DCNN feature

Convolutional neural network (CNN) [26] is a type of feed-
forward artificial neural network which is inspired from
biology.The individual neurons are designed to simulate cells
within visual cortex, which are sensitive to small sub-regions
of input space, named receptive fields [21]. Thus the connec-
tions among neurons are tied in such a way that each output
neuron only responds to a local region of input neurons. This
mechanism is better suited to exploit the strong spatially local
correlations presented in natural images.Currently, one of the
most popular CNN architectures is the 9-layers deep model
[24] designed for ImageNet ILSVRC-2012. There are four
convolutional layers with their corresponding pooling layers,
and finally followed by an output layer which is constructed
according to category labels. As the experiments in some lat-
est works [14,25,44] have shown, this architecture, even the
pre-trainedmodel via ImageNet datawithout any further spe-
cific design changes, can be well generalized to many other
problems while maintaining impressive performance.

2.2 Video (image set) modeling

After extracting image features for each video frame, one
video clip can be regarded as a set of feature vectors F =
[ f1, f2, ..., fn], where fi ∈ Rd denotes the i-th image with
d-dimensional feature description, and n is the number of
frames in the video clip. Based on the feature vector set,
we exploit three types of image set models, linear subspace
[17], covariance matrix [50], and Gaussian distribution [1,
40], for their desirable capability of capturing data variations
to model emotion video.

2.2.1 Linear subspace

The feature set F = [ f1, f2, ..., fn] can be represented by a
linear subspace P ∈ Rd×r via SVD as follows:

n∑

i=1

fi f
T
i = PΛPT , (1)

where P = [p1, p2, ..., pr ], p j is the j-th leading eigen-
vector, and r is the dimension of the subspace. All of the

video samples can be modeled as a collection of linear sub-
spaces [17,53], which are also the data points on Grassmann
manifold Gr(r, d) (Grassmann manifold is a special case of
Riemannian manifold [17]).

2.2.2 Covariance matrix

We can also represent the image feature set with the d × d
sample covariance matrix:

C = 1

n − 1

n∑

i=1

( fi − f )( fi − f )T , (2)

where f is the mean vector of the image features. As the
raw second-order statistic of a set of samples, the covariance
matrix makes no assumption about the data distribution, thus
providing a natural representation by encoding the feature
correlation information specific to each class [50]. It is also
well known that the d × d nonsingular covariance matrices
are Symmetric Positive Definite (SPD) matrices Sym+

d lying
on a Riemannian manifold.

2.2.3 Gaussian distribution

Suppose the feature vectors f1, f2, ..., fn follow a k-
dimensional Gaussian distribution N (μ,Σ), where μ and
Σ are the data mean and covariance respectively:

μ = E( fi ) = 1

n

n∑

i=1

fi , (3)

Σ = E[( fi − μ)( fi − μ)T ]

= 1

n − 1

n∑

i=1

( fi − μ)( fi − μ)T . (4)

The Gaussian jointly considers the first-order statistic mean
and second-order statistic covariance in a single model. By
embedding the space of Gaussians into a Lie group or regard-
ing it as a product of Lie groups, we canmeasure the intrinsic
distance between Gaussians on the underlying Riemannian
manifold [27].

2.2.4 Discussion

It is interesting to discuss the relationship among the three
different video modeling alternatives (i.e. linear subspace,
covariance matrix, and Gaussian distribution) presented
above. From Eqs. 1 and 2, our linear subspace (“P”) can be
viewed as obtained by performing an SVD on the covariance
matrix (“C”), where the sample mean information is kept
while the eigenvalues that capture the relative importance
(magnitude) of different variance directions are discarded.
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Moreover, compared to covariance matrix, Gaussian distrib-
ution explicitly incorporates “sample mean” into the feature
set modeling, which captures both first-order and second-
order statistics information.

2.3 Riemannian kernels

The Riemannian kernels enable the classifiers to operate in
an extrinsic feature space without computing the coordinates
of data in original space. The kernel mapping (e.g. ΦProj.

and ΦLED) can generates the kernel function k(·, ·) by

Ki, j = k(xi , x j ) = Φ(xi )
TΦ(x j ). (5)

In the following, we introduce the specific forms of kernel
mappings/functions for different set models.

2.3.1 Kernels for linear subspace

Suppose we have N video samples, as presented in Sect.
2.2.1, these video samples can be modeled as a collection of
linear subspaces which correspond to points lying on Grass-
mann manifold Gr(r, d) (also in Riemannian space). We
denote the collection of N linear subspaces by P = {Pi }Ni=1.
The similarity between two data points Pi and Pj can be
measured via mapping the Grassmann manifold to Euclid-
ean space using Mercer kernels [17]. One popularly used
kernel [17,18,31] is the Projection kernel originated from
the principle angles between two subspaces given by (see
Fig. 2):

Kproj.−poly.
i, j = (γ · ||PT

i Pj ||2F )α, (6)

whereKproj.−poly.
i, j is an element in the kernel matrixK. The

corresponding mapping is Φproj. = Pi PT
i . Then a form of

RBF kernel [49] can be generated using Φproj. via:

Kproj.−rb f
i, j = exp(−γ ||Φproj.(Pi ) − Φproj.(Pj )||2F ). (7)

Fig. 2 An illustration of principal angles of linear subspaces and their
projection metric distances on Grassmann manifold Gr(r, d)

Fig. 3 An illustration of mapping covariance matrices from the SPD
Riemannian manifold M to the tangent space T (vector space) at the
point of identity matrix I on M

2.3.2 Kernels for covariance matrix

The d × d SPD matrices, i.e. non-singular covariance matri-
ces C = {Ci }Ni=1, can be formulated as data points on SPD
Riemannian manifold [37]. A commonly used distance met-
ric for SPD matrices is the Log-Euclidean distance (LED)
[2]. Based on LED, [50] proposed a Riemannian kernel that
computes the inner-product in a vector space T obtained by
mapping data points from the SPD manifold to the tangent
space at the identity matrix I via ordinary matrix logarithm
operator (see Fig. 3).

KLED−poly.
i, j = (γ · trace[log(Ci ) · log(C j )])α. (8)

The mapping corresponding to KLED−poly.
i, j is given by

ΦLED = log(Ci ). Similarly a form of RBF kernel [49] can
be generated using ΦLED by:

KLED−rb f
i, j = exp(−γ ||ΦLED(Ci ) − ΦLED(C j )||2F ). (9)

2.3.3 Kernels for Gaussian distribution

The space of d-dimensional multivariate Gaussians is a Rie-
mannian manifold and can be embedded into the space of
symmetric positive definite (SPD) matrices [33], denoted
as Sym+

d+1. Thus a d-dimensional Gaussian N (μ,Σ) is
uniquely represented by a (d + 1) × (d + 1) SPD matrix
G as follows:

N (μ,Σ) ∼ G = |Σ |− 1
d+1

[
Σ + μμT μ

μT 1

]
(10)

When obtaining the SPD matrices G = {Gi }Ni=1, we can
calculate the corresponding Riemannian kernels similarly as
in Sect. 2.3.2:

KLED−poly.
i, j = (γ · trace[log(Gi ) · log(G j )])α. (11)
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KLED−rb f
i, j = exp(−γ ||ΦLED(Gi ) − ΦLED(G j )||2F ).

(12)

2.4 Classifiers

Based on the above sixRiemannian kernels, traditional learn-
ing methods operating in vector space can be exploited to
classify data points (i.e. image setmodels) on theRiemannian
manifolds for emotion video recognition. In our framework,
three types of classifiers are investigated as described below.

2.4.1 Kernel SVM

An SVM classifier in the kernel space is given by

f (x) = −→w ∗TΦ(x) + b∗, (13)

where Φ(x) is the mapping (e.g. ΦProj. and ΦLED). The
weight vector −→w ∗ and bias b∗ are given by

−→w ∗, b∗ = argmin−→w ,b,η

1

2
||−→w ||22 + C

∑

i

ηi .

s.t. yi (
−→w TΦ(xi ) + b) ≥ 1 − ηi , ηi ≥ 0. (14)

For this work, we employ the LibSVM [3] implementa-
tion on our pre-calculated Riemannian kernel matrices for
classification.

2.4.2 Logistic regression

According to the Riemanian kernel matrices, the i-th row
contains similarities between the i-th video (image set) and
all videos in training set, which can be directly treated as a
feature vector of this sample. For each sample in the training
or test set, we calculate its similarities to all training samples
thus obtain the training kernel matrix and test kernel matrix
for feature representation. We employ an L2-regularized
logistic regression on these features for classification by solv-
ing the objective function:

min−→w

(
C

∑

i

log(1 + exp(−yi − −→w T xi )) + 1

2
||−→w ||22

)
.

(15)

For this work, we employ the Liblinear [13] implementation
for optimization.

2.4.3 Partial least squares

Similar to Logistic Regression above, we also apply the par-
tial least square classifier [52] to the kernel matrices. We

exploit it in a one-vs-all manner to especially deal with the
difficult and confusion categories as in [31].

Suppose there are c categories of emotions, we design
c one-vs-all PLS to predict each class independently. For a
single classifier, given feature variables X and 0–1 labels Y ,
the PLS decomposes them into

X = UxV
T
x + rx

Y = UyV
T
y + ry (16)

whereUx andUy contain the extracted latent vectors, Vx and
Vy represent the loadings, and rx and ry are residuals. PLS
is to find weight vectors wx and wy such that

[cov(ux , uy)]2 = max|w|=|v|=1
[cov(Xwx ,Ywy)]2, (17)

where ux and uy are the column vectors ofUx andUy respec-
tively. cov(ux , uy) is the covariance of samples. With the
obtained latent vectors, the regression coefficients from X to
Y are given by:

β = Wx (V
T
x Wx )

−1UxY

= XTUy(U
T
x X XTUx )

−1UT
x Y, (18)

thus we can predict Ŷ = Xβ [39]. Applying the c one-vs-all
PLS to each test sample, we can obtain c regression values
respectively. The category corresponding to the maximum
value is determined to be the recognition result.

Since PLS optimization problem is quite related to canon-
ical correlation analysis (CCA) [19], it is interesting to
compare these two techniques here, as what is done in several
previous work [42]. According to their objective function,
CCA tends to maximize the correlation between the latent
scores, while PLS tends to correlate the latent score of regres-
sor and response as well as captures the variations presenting
in the regressor/response space too. Since CCA only corre-
lates the latent score, it may not be able to generalize well
to unseen testing points and even may fail to differentiate
between training samples in the latent space under some kind
of special conditions.

2.4.4 Fusion scheme

We learn each classifier on the six Riemannian kernels with
different image features respectively. An equal-weighted lin-
ear fusion is conducted among the prediction scores obtained
by the same type of classifiers. Besides the video modality,
we also obtain prediction scores on audio features (extracted
by OpenSMILE toolkit) [12]. A weighted term λ is intro-
duced at decision level for video–audio fusion:

Score f usion = (1 − λ)Scorevideo + λScoreaudio (19)
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Similarly, the category corresponding to the maximum value
of the score vector is chosen as the recognition result.

3 Experiments

3.1 EmotiW 2013/2014 challenge

The emotion recognition in the wild challenge (EmotiW)
[9,10] consists of an audio–video based emotion classifica-
tion task which mimics real-world conditions. The goal of
this challenge is to extend and carry forward the new com-
mon platform for evaluation of emotion recognition methods
in the wild. The database in the challenge is the acted faical
expression in wild (AFEW) [11], which has been collected
from movies showing close-to-real-world conditions. Three
sets for training, validation, and testing are available for par-
ticipants (the numbers of samples for each emotion category
in the three sets are illustrated in Table 1). The task is to
classify an audio–video clip into one of the seven emotion
categories (i.e. angry, disgust, fear, happy, neutral, sad, and
surprise). The labels of the testing set are unknown. Partic-
ipants can learn their models on training set and optimize
the parameters on validation set, then report the prediction
results on testing set for evaluation.

3.2 Parameter setting

We simply use the aligned face images provided by EmotiW
organizers. All images are resized to 64×64 pixels. As intro-
duced in Sect. 2.1, three kinds of image features are employed
on the aligned faces: HOG, Dense SIFT, and DCNN
feature.

For HOG, we divide each image into 7× 7 = 49 overlap-
ping blocks with the size of 16 × 16 pixels (i.e. the strides
are 8 pixels in both horizontal and vertical directions). The
descriptor is applied by computing histograms of oriented
gradient on 2 × 2 cells in each block, and the orientations
are quantized into 9 bins, which results in 2 × 2 × 9 = 36

Table 1 The numbers of samples for each emotion category in the
training, validation and testing sets

An Di Fe Ha Ne Sa Su Total

(a) EmotiW 2013

Train 58 40 50 65 63 52 52 380

Val 59 50 54 62 55 64 52 396

Test 54 49 33 50 48 43 35 312

(b) EmotiW 2014

Train 92 66 66 105 102 82 54 567

Val 59 39 44 63 61 59 46 371

Test 58 26 46 81 117 53 26 407

(a)

(b)

(c)

Fig. 4 Emotion recognition accuracy on validation set of the EmotiW
2014 data based on different classifiers. a Kernel SVM. b Logistic
regression. c Partial least squares

dimensions for each block and 36 × 49 = 1764 dimensions
for the whole image.

ForDense SIFT,we divide each image into 49 overlapping
local regions as done for HOG. In each 16×16 pixels block,
we apply the SIFT descriptor to the center point, and obtain
a typical 4 × 4 × 8 = 128 dimensions feature vector. For
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Table 2 Emotion recognition
accuracy on validation set of the
EmotiW 2014 data based on
different image features

Linear subspace Covariance matrix Gaussian distribution

proj-poly proj-rbf LED-poly LED-rbf g-LED-poly g-LED-rbf

(a) HOG

Kernel SVM 38.27 37.47 38.01 26.15 35.85 31.27

Logistic regression 40.16 35.04 16.44 36.39 16.98 33.69

Partial least squares 38.01 38.01 38.01 38.27 35.85 37.47

(b) Dense SIFT

Kernel SVM 39.08 36.39 40.70 25.88 39.89 36.39

Logistic regression 39.08 38.54 16.44 30.46 16.98 38.27

Partial least squares 42.05 42.05 40.97 40.70 39.62 40.70

(c) DCNN-α (Caffe-ImageNet)

Kernel SVM 37.74 36.39 36.93 31.00 39.08 33.42

Logistic regression 37.47 37.20 17.25 37.47 33.69 36.66

Partial least squares 37.47 37.47 37.74 37.20 38.81 36.12

(d) DCNN-β (Caffe-CFW)

Kernel SVM 40.70 38.54 40.43 30.46 38.01 36.12

Logistic regression 40.97 38.27 16.98 40.97 16.98 38.27

Partial least squares 42.86 42.86 40.70 42.32 40.70 42.05

Bold indicates the best performance

the whole image, we have 128 × 49 = 6272 dimensions
feature.

For DCNN, we employ the Caffe [22] implementation,
which is commonly used in several latest works [14,44]. Two
types of DCNNmodels are trained by feeding different train-
ing data: ImageNet ILSVRC-2012 [7] and Celebrity Faces
in the Wild (CFW) [56]. The first one is for evaluating the
generalization ability of the deep model and natural image
data, so we exactly take use of the same parameters as that in
[24], the 9216 nodes’ values of the last convolutional layer
are used for final image features. The second one is to explore
the shared feature representations for both face identities and
expressions. Over 150,000 face images from 1520 people are
used for training and the labels are their identities. The archi-
tecture is 3@237×237 → 96@57×57 → 96@28×28 →
256@28 × 28 → 384@14 × 14 → 256@14 × 14 →
256@7 × 7 → 4096 → 1520. Similar to the first model,
the 256× 7× 7 = 12,544 nodes’ values of the last convolu-
tional layer are used for final features.

PCA dimension reduction was conducted on the high-
dimensional image featuresmainly for consideration of com-
putational cost. We had empirically chosen the ratio=0.90
to achieve a tradeoff between performance and computation
complexity.

3.3 Results comparisons

3.3.1 Results on EmotiW 2014 data

We conduct extensive evaluation on EmotiW 2014 challenge
data. The emotion recognition results on validation set based

on different classifiers are illustrated in Fig. 4. For each single
classifier, the DCNN features have shown promising perfor-
mance on the task, especially the feature extracted by Caffe
trained on CFW has achieved better results than the specific
hand-crafted feature HOG and Dense SIFT.

We also demonstrate the results on validation set based
on different features in Table 2. For each single feature, the
results based on six Riemannian kernels and three classifiers
are all listed. As shown, PLS achieves the best performance
for its one-vs-allmannerwhich dealswith each category indi-
vidually and thus can pay specific attention to those difficult
and confusion categories.

The overall recognition results are obtained by one-vs-
all PLS classifier using decision-level fusion over different
kernels. As presented in Sect. 2.4.4, an equally weighted
linear fusion is conducted among the prediction scores based
on the six Riemannian kernels with different features, and the
weight parameter for video–audio fusion is set as λ = 0.3
in the final submission. Different fusion strategies and their
corresponding results on validation and test sets are listed in
Tables 3 and 4.

The confusion matrix of the final submission method are
shown in Fig. 5. We can see that “angry”, “happy” and “neu-
tral” aremuch easier to be distinguished fromother emotions,
but it is still hard to do well on some difficult and confu-
sion emotion categories such as “disgust”, “fear”, and “sad”.
Moreover, in contrast to the experience in emotion classifi-
cation on lab-controlled data, in our experiments, “surprise”
is hard to be recognized and easy to be confused with some
other categories like “neutral” and “fear”. The reason may
lie in the following two aspects: first, few “surprise” data
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Table 3 Emotion recognition accuracy on validation set of the EmotiW
2014 data based on multiple kernel methods fusion via PLS

Features Accuracy (Val)

HOG 38.01

Dense SIFT 43.94

DCNN-α (Caffe-ImageNet) 39.35

DCNN-β (Caffe-CFW) 43.40

HOG + Dense SIFT 44.47

HOG + Dense SIFT + DCNN-α 44.74

HOG + Dense SIFT + DCNN-β 45.28

Bold indicates the best performance

Table 4 Emotion recognition accuracy on both validation and test set
of the EmotiW 2014 data based on Audio–Video (A + V) fusion via
PLS

Methods Accuracy

Val Test

Audio (OpenSMILE [12]) 30.73 –

A + V(HOG + Dense SIFT) 46.36 46.68

A + V(HOG + Dense SIFT + DCNN-α) 46.90 47.91

A + V(HOG + Dense SIFT + DCNN-β) 48.52 50.37

Bold indicates the best performance

are provided for learning and testing compared with other
categories (as shown in Table 1); second, the “surprise”
emotion may not be acted exaggeratedly sometimes in the
real-world condition, thus no typical appearance variations
(e.g. mouth stretching, upper lip raising) are shown as those
in lab-controlled data.

Table 5 compares the overall classification accuracy of
EmotiW2014participantswith the video/audio baselines and
among each other. Our final submission (denoted as “ICT,
CAS” in the figure) achieves 50.37 % on test set, with a sig-
nificant gain of 16.7% above the challenge baseline 33.66%,
and wins the first place in the challenge.

3.3.2 Results on EmotiW 2013 data

We also evaluate the proposed method on EmotiW 2013 data
and conduct comparisons with our former work [31] sub-
mitted to EmotiW 2013 challenge. Using the same settings
introduced in Sect. 3.2, we can obtain the recognition results
on validation set based on different features as illustrated
in Table 6. According to the experience on EmotiW 2014
data, we only employ the DCNN-β features and Partial Least
Squares for classification. Due to the emotional labeling
inaccuracy of EmotiW 2013 data [9], the recognition perfor-
mance degrade significantly from ∼40 to ∼30 %. Moreover,
the three different image features (i.e. HOG,Dense SIFT, and
DCNN-β) obtain similar accuracies (see Tables 6 and 7),

(a)

(b)

Fig. 5 Confusionmatrices of thefinal submissionmethod.aValidation
set. b Test set

Table 5 Performance comparisons of participants in the second
EmotiW 2014 challenge [9]

Participants Accuracy

Val Test

ICT, CAS [32] 48.52 50.37

BNU [45] 45.55 47.17

HKPU [4] 40.21 45.21

Bogazici [23] 44.20 44.23

Ulm [36] – 41.77

Oulu [20] 45.82 41.52

Kielce [15] – 37.84

Munchen [38] 36.97 35.27

Baseline [9] 33.15 33.66

Bold indicates the best performance

which is different from the results on EmotiW 2014 data
(please revisit Table 2).

Similar to the EmotiW 2014 data, we demonstrate the
fusion results of six different Riemannian kernels on valida-
tion set in Table 7 and the finalmulti-modal (i.e. audio-video)
fusion results in Table 8.We can see that the best performance
achieved on EmotiW 2013 data is 38.64 %, with a gain of
2.8 % above the results 35.86 % reported in our former work
[31]. Accordingly, the confusion matrix is shown in Fig. 6.
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Table 6 Emotion recognition
accuracy on validation set of the
EmotiW 2013 data based on
different image features

Linear subspace Covariance matrix Gaussian distribution

proj-poly proj-rbf LED-poly LED-rbf g-LED-poly g-LED-rbf

(a) HOG

Partial least squares 29.54 29.54 33.84 34.85 32.58 32.07

(b) Dense SIFT

Partial least squares 32.07 32.07 33.33 33.33 35.10 33.84

(c) DCNN-β (Caffe-CFW)

Partial least squares 32.84 32.84 32.58 33.08 32.58 31.31

Bold indicates the best performance

Table 7 Emotion recognition accuracy on validation set of the EmotiW
2013 data based on multiple kernel methods fusion via PLS classifiers

Features Accuracy (Val)

HOG 34.85

Dense SIFT 35.10

DCNN-β (Caffe-CFW) 33.33

HOG + Dense SIFT + DCNN-β 36.11

Bold indicates the best performance

Table 8 Emotion recognition accuracy on validation set of the EmotiW
2013 data based on Audio–Video (A + V) fusion

Methods Accuracy (Val)

Audio (OpenSMILE [12]) 24.24

A + V (HOG) 35.86

A + V (Dense SIFT) 37.12

A + V (DCNN-β) 36.36

A + V (HOG + Dense SIFT + DCNN-β) 38.64

Bold indicates the best performance

Fig. 6 Confusionmatrix of thefinal results onEmotiW2013validation
set

3.3.3 Results on CK+ and MMI databases

To further evaluate the generalization ability, In this sec-
tion, we also perform experiments on two well-known
lab-controlled databases: CK+ and MMI.

Table 9 The number of samples for each expression in CK+ and MMI
database

An Co Di Fe Ha Sa Su Total

CK+ 45 18 59 25 69 28 83 327

MMI 31 – 32 28 42 32 40 205

The CK+ database [35] consists of 593 sequences from
123 subjects, which is an extended version of Cohn-Kanade
(CK) database. The image sequence vary in duration from 10
to 60 frames and incorporate the onset (neutral face) to peak
formation of the facial expression. The validated expression
labels are only assigned to 327 sequences which are found
to meet the criteria for 1 of 7 discrete emotions (anger, con-
tempt, disgust, fear, happiness, sadness, and surprise) based
on facial action coding system (FACS). We adopt leave-one-
subject-out cross-validation (118 folds) following the general
setup in [35].

TheMMI database [46] includes 30 subjects of both sexes
and ages from 19 to 62. In the database, 213 sequences
have been labeled with six basic expressions, in which 205
sequences were captured frontal view. Each of the sequence
reflects the whole temporal activation patterns (onset →
apex → offset) of a single facial expression type. In our
experiments, all of these data were used and also a person-
independent tenfold cross-validation was conducted as in
several previous work [16,30]. Compared to CK+, MMI is
thought to be more challenging for the subjects pose expres-
sions non-uniformly and usually wear some accessories (e.g.
glasses, moustache). The number of samples for each expres-
sion in CK+ and MMI is illustrated in Table 9.

The average emotion recognition accuracy results based
on different image features (i.e. HOG, Dense SIFT. Note
that, for fair comparison, we don’t employ DCNN feature
which involve external data.) are illustrated in Tables 10 and
11 for CK+ and MMI respectively. We can observe that the
covariance matrix based modeling achieves the best perfor-
mance on both databases for different features (much better
than linear subspace based modeling). However on wild data
(please revisit Table 2), linear subspace shows better perfor-
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Table 10 Average emotion
recognition accuracy on CK+
database based on different
image features

Linear subspace Covariance matrix Gaussian distribution

proj-poly proj-rbf LED-poly LED-rbf g-LED-poly g-LED-rbf

(a) HOG

Logistic regression 78.01 74.63 14.29 88.81 35.42 73.72

Partial least squares 80.09 83.61 92.69 92.37 83.28 83.61

(b) Dense SIFT

Logistic regression 78.64 78.39 39.30 87.17 54.98 79.81

Partial least squares 84.39 84.39 91.63 91.38 85.63 86.40

Bold indicates the best performance

Table 11 Average emotion
recognition accuracy on MMI
database based on different
image features

Linear subspace Covariance matrix Gaussian distribution

proj-poly proj-rbf LED-poly LED-rbf g-LED-poly g-LED-rbf

(a) HOG

Logistic regression 59.73 58.16 13.91 63.11 30.50 55.08

Partial least squares 59.27 59.27 66.42 63.58 61.09 60.85

(b) Dense SIFT

logistic regression 58.82 55.36 13.91 63.15 47.88 63.15

Partial least squares 57.76 57.76 67.78 63.94 57.71 57.74

Bold indicates the best performance

Table 12 Fusion results of different Riemannian kernels and different
image features on two databases (a) CK+ database, (b) MMI database

Features Average Acc Overall Acc

(a) CK+ database

HOG 93.42 95.72

Dense SIFT 92.20 95.11

HOG + Dense SIFT 94.82 96.64

(b) MMI database

HOG 66.64 70.24

Dense SIFT 67.78 70.24

HOG + Dense SIFT 71.38 74.63

Bold indicates the best performance

mance compared to covariance and gaussian modeling. The
reason might be that the expression variations in these two
datasets are from lab controlled setting, so there exist a whole
procedure for performing the exaggerated expression, which
favors the COV model.

The fusion results of different Riemannian kernels and
different image features are listed in Table 12. Two crite-
ria, average recognition accuracy (per category) and overall
classification accuracy are measured for performance com-
parison. The corresponding confusion matrices are shown in
Fig. 7. We can observe that even on lab-controlled data, it is
still hard to recognize some difficult and confusion emotion
categories such as “contempt” and “fear” (especially serious
for “fear” on MMI database).

(a)

(b)

Fig. 7 Confusionmatrices of the final results. a CK+ database. bMMI
database

Finally, we also compare the our results with several state-
of-the-art methods as in Table 13. The results demonstrate
that the proposed framework outperforms the existing meth-
ods significantly.
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Table 13 Performance comparison with state-of-the-art methods (a)
CK+ database, (b) MMI database

Methods Average Acc Overall Acc

(a) CK+ database

AAM [35] 83.3 88.3

HMM [51] 83.5 –

ITBN [51] 86.3 88.8

3DCNN [29] 78.0 85.9

3DCNN-DAP [29] 87.9 92.4

MCF [5] 89.4 –

Ours 94.82 96.64

(b) MMI database

HMM [51] 51.5 –

ITBN [51] 59.7 60.5

3DCNN [29] 50.7 53.2

3DCNN-DAP [29] 62.2 63.4

Ours 71.38 74.63

Bold indicates the best performance

4 Conclusions

In this paper, we propose a method for video-based emotion
recognition in real-world condition. Each emotion video clip
is simply regarded as an image set and different kinds of
image set models are explored to represent the video clips
as a collection of data points on Riemannian manifold. Then
multiple Riemanian kernels are employed on these set mod-
els correspondingly for measuring distance metrics. At last,
a score-level fusion of classifiers learned based on differ-
ent kernel methods and different modalities is conducted for
producing final recognition result. The method is evaluated
on EmotiW 2013/2014 data and has achieved very promis-
ing results on both validation and unseen test data. In the
future, we will try to deal with the few difficult categories
and explore more effective fusion strategy to further improve
the performance.
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